Mr. P. MacDonald

Acceleration Review

- 1. Define acceleration. How do the units reflect this definition?
- 2. Describe a situation where an object can have:
 - a. A constant speed but be experiencing a non-zero acceleration.
 - b. An instantaneous velocity of zero but be accelerating.
- 3. A car accelerates from 25 m/s [E] to 5 m/s [W] in 35 seconds.
 - a. Calculate the acceleration of the car. { $\vec{a} = -0.86 \text{ m/s}^2$ }
 - b. Calculate the displacement of the car during the above acceleration. $\{\vec{d}_f = 348 \text{ m}\}$
- 4. A person is standing atop a cliff that is 125 m high and drops a rock to the water below.
 - a. Calculate the time it takes for the rock to hit the water below. $\{t = 5.04 \text{ s}\}$
 - b. Calculate the velocity as it enters the water. { $\vec{v_f}$ = -49.5 m/s}
 - c. Calculate the velocity of the rock 65 m above the water. { \vec{v}_f = -24.3 m/s}
- 5. Standing on the ground a person throws a ball. It leaves his hand with an upward velocity of 17 m/s.
 - a. Calculate the length of time the ball will be traveling upwards. $\{t = 1.73 s\}$
 - b. Calculate the ball's maximum height. { \vec{d}_f = 14.7 m}
 - c. Calculate the velocity of the ball when it is 5 m above the ground. $\{\vec{v}_f = \pm 13.8 \text{ m/s}\}$
 - d. Calculate the position above the ground when the ball traveling at 4.5 m/s upwards. $\{\vec{d}_f = 13.7 \text{ m}\}$
- 6. A plane changed its velocity from 150 m/s [S] to 415 m/s [N]. The acceleration was a constant 15.0 m/s².
 - a. Calculate the time it took for the plane to change its velocity. $\{t = 37.7 s\}$
 - b. Calculate the time it took for the plane to return to its starting point. $\{t = 4.47 s\}$
 - c. Calculate the displacement of the plane in that time. { $\vec{d}_f = 5000 \text{ m}$ }
 - d. Calculate the distance the plane traveled in that time. $\{d = 6500 \text{ m}\}$